Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 12(1): 14577, 2022 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-36028537

RESUMO

The planetary missions including the Venus Climate Orbiter 'Akatsuki' provide new information on various atmospheric phenomena. Nevertheless, it is difficult to elucidate their three-dimensional structures globally and continuously only from observations because satellite observations are considerably limited in time and space. We constructed the first 'objective analysis' of Venus' atmosphere by assimilating cloud-top horizontal winds on the dayside from the equator to mid-latitudes, which is frequently obtained from Akatsuki's Ultraviolet Imager (UVI). The three-dimensional structures of thermal tides, found recently to play a crucial role in maintaining the super rotation, are greatly improved by the data assimilation. This result is confirmed by comparison with Akatsuki's temperature observations. The momentum transport caused by the thermal tides and other disturbances are also modified by the wind assimilation and agrees well with those estimated from the UVI observations. The assimilated dataset is reliable and will be open to the public along with the Akatsuki observations for further investigation of Venus' atmospheric phenomena.

2.
Nat Commun ; 12(1): 3682, 2021 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-34140504

RESUMO

Gravity waves play essential roles in the terrestrial atmosphere because they propagate far from source regions and transport momentum and energy globally. Gravity waves are also observed in the Venus atmosphere, but their characteristics have been poorly understood. Here we demonstrate activities of small-scale gravity waves using a high-resolution Venus general circulation model with less than 20 and 0.25 km in the horizontal and vertical grid intervals, respectively. We find spontaneous gravity wave radiation from nearly balanced flows. In the upper cloud layer (~70 km), the thermal tides in the super-rotation are primary sources of small-scale gravity waves in the low-latitudes. Baroclinic/barotropic waves are also essential sources in the mid- and high-latitudes. The small-scale gravity waves affect the three-dimensional structure of the super-rotation and contribute to material mixing through their breaking processes. They propagate vertically and transport momentum globally, which decelerates the super-rotation in the upper cloud layer (~70 km) and accelerates it above ~80 km.

3.
Science ; 368(6489): 405-409, 2020 04 24.
Artigo em Inglês | MEDLINE | ID: mdl-32327594

RESUMO

Venus has a thick atmosphere that rotates 60 times as fast as the surface, a phenomenon known as super-rotation. We use data obtained from the orbiting Akatsuki spacecraft to investigate how the super-rotation is maintained in the cloud layer, where the rotation speed is highest. A thermally induced latitudinal-vertical circulation acts to homogenize the distribution of the angular momentum around the rotational axis. Maintaining the super-rotation requires this to be counteracted by atmospheric waves and turbulence. Among those effects, thermal tides transport the angular momentum, which maintains the rotation peak, near the cloud top at low latitudes. Other planetary-scale waves and large-scale turbulence act in the opposite direction. We suggest that hydrodynamic instabilities adjust the angular-momentum distribution at mid-latitudes.

4.
Nat Commun ; 10(1): 23, 2019 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-30626864

RESUMO

Cloud patterns are important clues for revealing the atmospheric circulation of Venus. Recently, a planetary-scale streak structure has been discovered in middle- and lower-cloud images of Venus' night-side taken by IR2, the 2-µm camera, on board the Akatsuki orbiter. However, its formation mechanism has not been investigated. Here we succeed, for the first time, in reproducing the patterns of the observed streak structure, as regions of strong downward flows that develop in high-resolution global simulations of the Venus atmosphere. The streaks are formed in both hemispheres with equatorial symmetry, which is caused by equatorial Rossby-like and Kelvin-like waves with zonal wavenumber one. The low-stability layer that has been suggested by past observations is essential for reproducing the streak structure. The streaks of downward flow result from the interaction of the meridionally tilted phase lines of the Rossby-like waves and the characteristics of baroclinic instability produced around the low-stability layer.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...